

TC de energía dual: Bases técnicas y aplicaciones en neurorradiología

Laura Oleaga

• Hospital Clínic Barcelona

Guión

- Bases técnicas
- Aplicaciones en Neurorradiología
- Ventajas de la energía dual
- Limitaciones de la energía dual

Tomografía Computarizada

- Atenuación
 - Efecto fotoeléctrico
 - Depende del número atómico
 - Energía del haz de rayos X
 - Predomina a bajas energías
 - Efecto Comptom
 - Depende de la densidad de electrones
 - No depende de la energía

Las imágenes representan la atenuación de los rayos X en un espectro de escala grises

Mapa de densidad o absorción para cada vóxel expresado en unidades Hounsfield

TC energía única

Dos materiales con coeficientes de atenuación similares (calcio/iodo) tienen unidades Hounsfield similares, incluso si tienen diferentes coeficientes de atenuación de masa y composiciones elementales diferentes

Las imágenes de TC de energía única convencional proporcionan información limitada sobre la composición del material de los tejidos investigados

- La diferenciación de materiales en tomografía computarizada espectral se basa en las diferencias en la atenuación en función de su dependencia energética
- Se basa en la dependencia energética de los dos mecanismos de absorción predominantes en rayos X (el efecto Compton de dispersión y el efecto fotoeléctrico)
- El efecto fotoeléctrico tiene una gran dependencia energética y la atenuación debida al mismo depende en gran medida del número atómico (Z) del elemento

TC energía dual

La absorción de energía es diferente para cada elemento químico y depende del número atómico

Los elementos con un número atómico alto, como el iodo tienen una fuerte dependencia energética

La tomografía de doble energía es sensible a la composición química del objeto

Dual source DECT

(Somatom Definition Flash and Force; Siemens Medical Solutions, Forchheim, Germany)

Single source DECT

(Discovery 750HD; GE Healthcare, Milwaukee, Wis) TwinBeam Dual Energy (Siemens)

Detector Based Spectral CT

(IQon spectral CT: Philips healthcare, Eindhoven, The Netherlands)

Tomografía Computarizada con recuento de fotones

Reducción del ruido electrónico

Mayor relación contraste-ruido

Mayor resolución espacial

Adquisición simultánea de múltiples energías

Reducción del endurecimiento del haz y artefactos metálicos

Willemink M.J. Radiology 2018; 289:293–312

- Los equipos de doble energía de segunda y tercera generación permiten realizar estudios con la misma calidad sin afectar a la dosis de radiación
 - Lenga.L. AJR 2019; 212:741-747
 - Forghani R. Neuroimaging Clin N Am 2017; 27:385-400

Head and neck single- and dual-energy CT: differences in radiation dose and image quality of 2nd and 3rd generation dual-source CT

Lukas Lenga¹, Marvin Lange¹, Simon S Martin¹, Moritz H Albrecht¹, Christian Booz¹, Ibrahim Yel¹, Christophe T Arendt¹, Thomas J Vogl¹, Doris Leithner¹²³

Conclusion: Contrast-enhanced head and neck DECT can be performed with second- and thirdgeneration DSCT systems without radiation penalty or impaired image quality compared with SECT, while third-generation DSCT is the most dose efficient acquisition method.

Lenga L. Br J Radiol 2021; 94(1122):20210069

•••••

Fuente única

DEF LOD	DLP total: 382						
Expl.	Nivel IQ	k∨	efec.	CTDIvol*	DLP	SSDE	Dw
			mAs	mGy	mGycm	mGy	cm
101		Sn100	60 m.A	0,01 L	0,40		
201	143	AuSn120	369	10,2 L	382	17,4	21,2
	Expl. 101 201	Expl. Nivel IQ 101 201 143	Expl. Nivel IQ kV 101 Sn100 201 143 AuSn120	Expl. Nivel IQ kV efec. mAs 101 Sn100 60 mA 201 143 AuSn120 369	Expl. Nivel IQ kV efec. CTDIvol* mAs mGy 101 Sn100 60 mA 0,01 L 201 143 AuSn120 369 10,2 L	Expl.Nivel IQkVefec.CTDIvol*DLPmAsmGymGycm101Sn10060 mA0,01 L0,40201143AuSn12036910,2 L382	Expl.Nivel IQkVefec.CTDIvol*DLPSSDEmAsmGymGymGymGymGymGy101Sn10060 mA0,01 L0,4010,2 L382201143AuSn12036910,2 L38217,4

Dosis de Radiación

Energía dual

mAs total: 3608	DLP total: 370							
	Expl.	Ref.C.mA	kΜ	Ref.C.	efec.	CTDIvol*	DLP	T rot.
		@120 kV		mAs	mAs	mGy	mGycm	S
Posición del paciente HF								
Topograma	100		Sn100		60 mA	0,01 L	0	
CUELLO DUAL	200	110	AuSn120	349	366	10,17 L	370	0,33

 El fundamento de la energía dual es diferenciar materiales según su respuesta a los distintos KV: 80KV y 140KV

 El iodo y el hueso presentan una gran diferencia en sus curvas de atenuación característica (la atenuación que presentan a distinto KV)

• • • • • • • • • • • •

TC energía dual

- Información simultánea con diferentes energías del haz
- Bajo KV
 - Mayor efecto fotoeléctrico frente a Compton
 - Mayor atenuación de elementos con elevado nº atómico (iodo 53, ca 20)
- El comportamiento diferente de elementos como el calcio, el iodo o el ác. úrico a 80 y 140 Kv permite su diferenciación

Patino M. RadioGraphics 2016; 36:1087–1105

TC energía dual

Se adquieren dos grupos de datos en la misma localización con dos energías una de 80Kv y otra de 140Kv

El software del equipo permite descomponer cada pixel de datos en base a las unidades Hounsfield, que dependen de la absorción de energía de cada pixel

Diferenciación Iodo/Hemorragia

En un vóxel en el que coinciden tejido cerebral, sangre y iodo la diferencia en absorción de energía entre el parénquima cerebral y la sangre corresponde al iodo

La imagen virtual sin contraste corresponde al componente sin iodo del vóxel (tejido cerebral y sangre)

Diferenciación Iodo/Hemorragia

Material	Imagen mixta	Mapa de iodo	TC SC virtual
lodo	Hiperdenso	Hiperdenso	Isodenso
Hemorragia	Hiperdensa	Isodensa	Hiperdensa
lodo+hemorragia	Hiperdensidad	Hiperdensidad	Hiperdensidad

lmagen mixta

Imagen virtual sin contraste

Imagen de lodo

lmagen mixta

Imagen virtual sin contraste

Imagen de lodo

100/140kV Imagen mixta (iodo+imagen virtual) Imagen virtual sin contraste

Imagen de lodo

Cuantificación de lodo

Dual-energy CT iodine quantification for characterizing focal thyroid lesions

Do Hyung Lee ¹, Young Hen Lee ¹, Hyung Suk Seo ¹, Ki Yeol Lee ¹, Sang-II Suh ², Inseon Ryoo ², Sung-Hye You ³, Byungjun Kim ³, Kyung-Sook Yang ⁴

Head Neck. 2019; 41:1024-1031

Quantification of Iodine Leakage on Dual-Energy CT as a Marker of Blood-Brain Barrier Permeability in Traumatic Hemorrhagic Contusions: Prediction of Surgical Intervention for Intracranial Pressure Management

^(D)U.K. Bodanapally, ^(D)K. Shanmuganathan, ^(D)Y.P. Gunjan, ^(D)G. Schwartzbauer, ^(D)R. Kondaveti, and ^(D)T.R. Feiter

AJNR 2019; 40:2059–65

Diferenciación Ca/Hemorragia

Material	тс	Mapa de calcio	SC virtual
Calcio	Hiperdenso	Hiperdenso	Isodenso
Hemorragia	Hiperdensa	Isodensa	Hiperdensa
Calcio+hemorragia	Hiperdensidad	Hiperdensidad	Hiperdensidad

Mapa de calcio

TC

Mapa de calcio

Virtual sin calcio

Mapa de calcio

STIR

calcio (edema)

Neuroimaging Clinics 2017 27, 483-487

Diferenciación Iodo/Calcio

Detección de iodo

- Mapa de iodo
- Imagen sin contraste virtual

Diferenciación calcio/iodo

- Sustracción automática del hueso
- Eliminación de placas ateromatosas

Mapa de iodo/sustracción calcio

Sin CV

Sustracción calcio

Diferenciación placa de calcio/iodo

Diferenciación iodo/calcio

Separación iodo y hueso automática

RadioGraphics 2017; 38:450–461

Imágenes con múltiples niveles de voltaje de kiloelectrones a partir de 40 keV

Las imágenes de bajo keV (<65 keV) ayudan a mejorar el contraste de la imagen

Las imágenes de alto keV(> 100 keV) se utilizan normalmente para disminuir los artefactos metálicos

Imagen monoenergética

60keV

70keV

110keV

Mixta

Mapa iodo

40keV

80keV

lodo residual en imágenes virtuales sin contraste

Pseudo realce en imágenes monocromáticas virtuales

Supresión incompleta del iodo a altas concentraciones

Limitaciones de la energía dual

Artefacto de endurecimiento del haz

Los valores de atenuación dependen del número atómico y también de la energía (variación a diferentes energías)

Error en la descomposición de un material adicional (Mapa de iodo/sangre, error vóxel con calcio)

Conclusiones

La atenuación del haz de rayos X depende de dos efectos (fotoeléctrico y Compton)

La utilización de dos energías del haz diferente permite una separación de materiales en función de su atenuación

Se pueden obtener mapas de yodo, calcio, sin contraste o sin calcio virtuales

Aplicaciones en SNC, angioTC, columna, cuello)

Muchas gracias